An incremental approach to gapping constructions

Petter Haugereid

Norwegian Section, Faculty of Education, Western Norway University of Applied Sciences

HPSG 2017
University of Kentucky, Lexington
July 7–9, 2017

Gapping and Conjunction Reduction (Sag et al., 1985)

Gapping:

- Kim likes Sandy, and Lee Leslie.
- (2) Pat wanted to try to go to Berne, and Chris to try to go to Rome. to go to Rome.

Conjunction reduction:

(3) Kim gave a dollar to Bobbie and a dime to Jean.

Particle verbs

(4) Jeg **tar med** mat, og du (*med) drikke. I bring with food and you with drink I will bring food, and you drinks.

Reflexive verbs

(5) Jeg ønsker meg fisk, og du (*deg) steik.
I wish REFL fish and you REFL roast
I want fish, and you roast.

Idiomatic expressions

(6) Jeg **brakte på bane** isen, og du (*på) (*bane) teen.

I brought on track ice-DEF and you on track tea-DEF
I brought up the ice cream, and you the tea.

Verbs with selected prepositions

- (7) ??Jeg hører på Jon, og du Marit.
 I listen to Jon and you Marit
 I listen to Jon, and you Marit.
- (8) Jeg hører på Jon, og du på Marit.I listen to Jon and you to MaritI listen to Jon, and you (listen) to Marit.

Ditransitive verbs

(9) Per serverte meg fisk, og Kari deg steik. Per served me fish and Kari you roast Per served me fish, and Kari you roast.

Passivized verbs

(10) Jeg **ble servert** fisk, og du steik. I was served fish and you roast I was served fish, and you roast.

Conjunction Reduction

It is possible to have gapping in cases where the topic is shared.

- (11) Per serverte meg fisk og deg steik. Per served me fish and you roast Per served me fish, and you roast.
- (12) I dag ble jeg servert fisk og du steik. Today was I served fish and you roast Today I was served fish, and you roast.

Conjunction Reduction in CCG

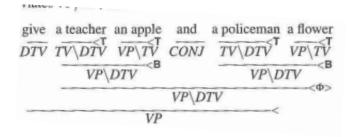


Figure 1: Conjunction Reduction in CCG (Steedman, 2000, 46)

Gapping in CCG

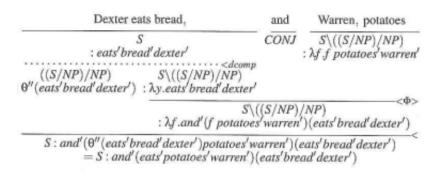


Figure 2: Gapping in CCG (Steedman, 2000, 190)

Gapping in HPSG – Linearization

- Linearization grammars
 - Constituent structure separated from phonological structure
 - DOM(ain) list: phonological items in surface order
 - Constraints define relationship between DOM list and constituent structure
- Accounts for
 - discontinuous constituents
 - non-constituent coordination (NCC)
- Assumed by most HPSG approaches to NCC (Kathol, 1995; Beavers and Sag, 2004; Chaves, 2005; Crysmann, 2008)
- Powerful and inefficient

Gapping in HPSG – Phrase structure rules

- DELPH-IN grammars
 - ERG (Flickinger, 2000)
 - JACY (Siegel et al., 2016)
- Regular phrase structure rules
 - → Phonology is simply concatenated
 - → Constituents are reflected in the derivation tree
- Efficient
- Non-constituent coordination are challenging

- An alternative, incremental approach to gapping is assumed (Haugereid and Morey, 2012)
 - regular phrase structure rules
 - derivation tree is separated from the constituent structure

START

Figure 3: Simplified derivation tree of the transitive sentence *John* eats fish

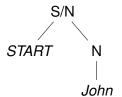


Figure 3: Simplified derivation tree of the transitive sentence *John* eats fish

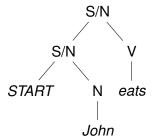


Figure 3: Simplified derivation tree of the transitive sentence *John* eats fish

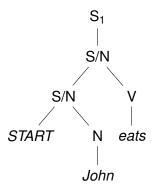


Figure 3: Simplified derivation tree of the transitive sentence *John* eats fish

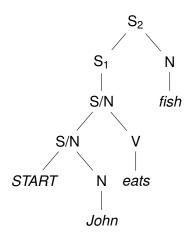


Figure 3: Simplified derivation tree of the transitive sentence *John* eats fish

Link hierarchy

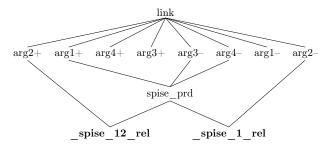


Figure 4: Type hierarchy of valence types

Link hierarchy

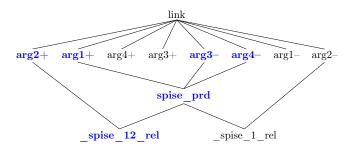
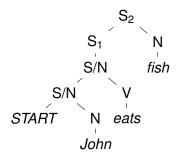
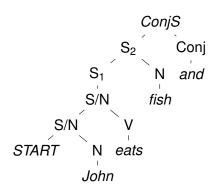
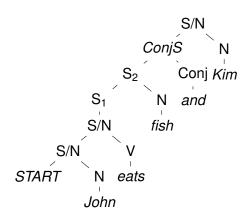


Figure 5: Type hierarchy of valence types

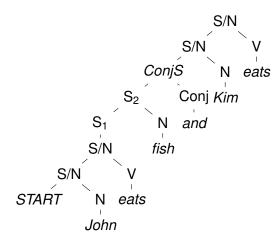

Valence features

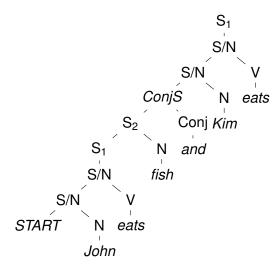

```
(14) \qquad \begin{bmatrix} START \\ VAL & \begin{bmatrix} CMP1|LINK & 0 \\ CMP2|LINK & 0 \\ CMP3|LINK & 0 \\ CMP4|LINK & 0 \end{bmatrix} \\ KEYREL|PRED & 0 \\ SLASH & \langle \rangle \\ \end{bmatrix}
```

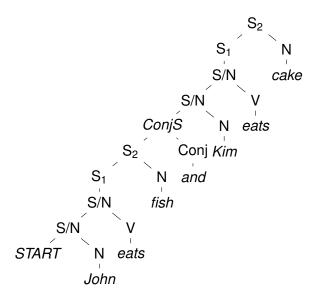
 In HPSG, coordination of full constituents is straightforward, at least as long as the constituents are of the same category:


$$XP \Rightarrow XP Conj XP$$

Coordination is obvious challenge for the incremental approach.







Coordination types

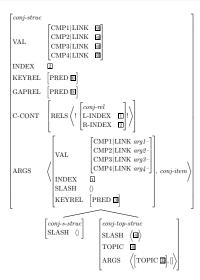


Figure 7: Hierarchy of coordination rules

Introduction Gapping in CCG and HPSG Incremental parsing Coordination Analysis of gapping References

Coordination types

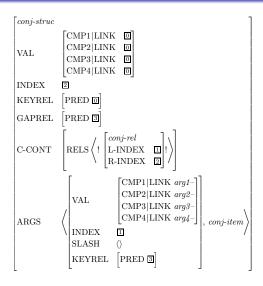


Figure 8: General coordination type

Coordination types

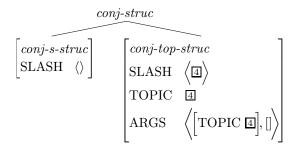


Figure 9: Coordination types

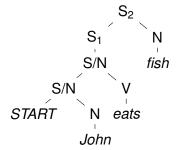


Figure 10: Derivation tree of two sentences with a shared topic

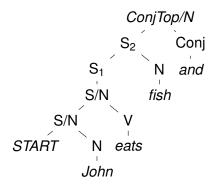


Figure 10: Derivation tree of two sentences with a shared topic

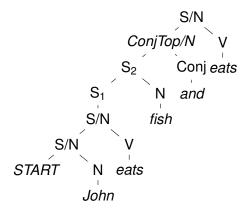


Figure 10: Derivation tree of two sentences with a shared topic

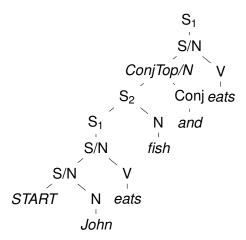


Figure 10: Derivation tree of two sentences with a shared topic

Incremental parsing and coordination

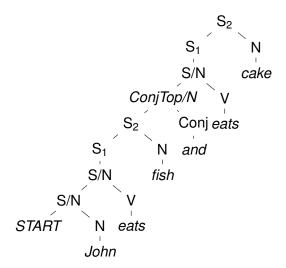
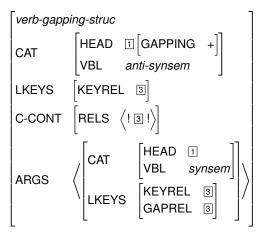


Figure 10: Derivation tree of two sentences with a shared topic

Analysis of gapping



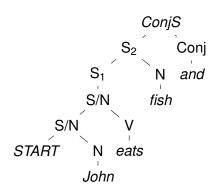
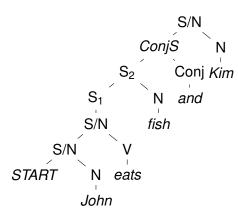
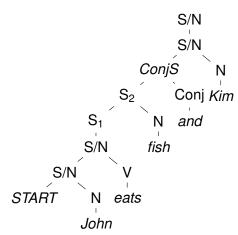
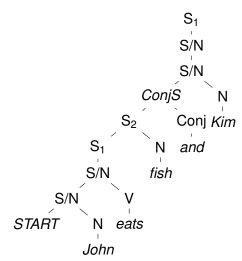
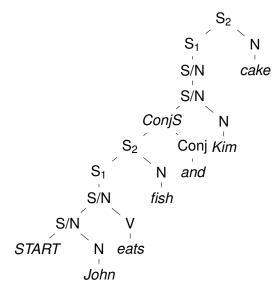
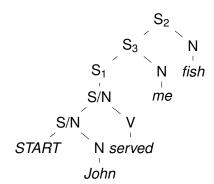



Figure 11: Unary rule for elided verbs



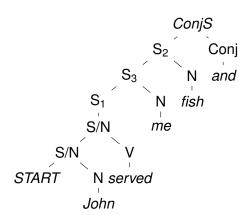




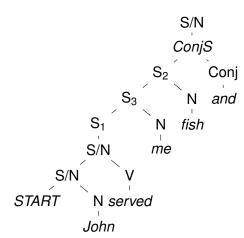

Semantic representation – Gapping

```
mrs
              0 h
TOP
              1 e
INDEX
                                                                     _eat_12_rel
                                                                                                                                               _and_c_rel
                                             -proper_q_rel
                  named_rel
                                                                                 9 h
                                             LBL
                                                                     LBL
                                                                                                                      LBL
                                                                                                                                   13 h
                                                                                                                                                                16 h
                                                                                             _fish_n_rel
                                                                                                                                                LBL
                  LBL
                                                                    ARG0
                                                                                 10 e,
                                                                                              LBL
                                                                                                         12 h,
                                                                                                                       ARG0
                                                                                                                                   11 x
                                                                                                                                               C-ARG
                                                                                                                                                                17 j
                               "John"
                  CARG
                                                                                 5 x
                                                                                             ARG0 11 x
                                                                                                                                                                10 e
                                                                     ARG1
                                                                                                                       RSTR
                                                                                                                                   14 h
                                                                                                                                               L-INDEX
                  ARG0
                                             BODY
                                                                    ARG2
                                                                                 11 <sub>X</sub>
                                                                                                                      BODY
                                                                                                                                   15 h
                                                                                                                                               R-INDEX
RELS
                                            proper_q_rel

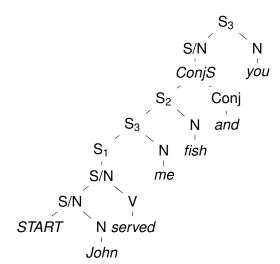
¬bare-sg_q_rel
¬

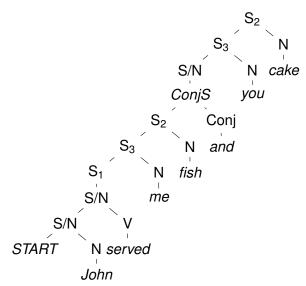

                  named_rel
                                                                                 24 h [_cake_n_rel ]
                                                                                                                                   27 h
                                            LBL
                                                                     LBL
                                                                                                                      LBL
                               18 h
                  LBL
                                                       20 x , ARG0
                                            ARG0
                                                                                              LBL
                                                                                                          26 h,
                                                                                                                      ARG0
                  CARG
                                                                    ARG1 20 x
                                                                                           ARG0
                                                                                                          25 <sub>X</sub>
                                                                                                                       RSTR
                                                                                                                      BODY
                \begin{pmatrix} qeq & \\ HARG & \boxed{7}h \\ LARG & \boxed{3}h \end{pmatrix}, \begin{pmatrix} qeq & \\ HARG & \boxed{14}h \\ LARG & \boxed{12}h \end{pmatrix}, \begin{pmatrix} qeq & \\ HARG & \boxed{30}h \\ LARG & \boxed{9}h \end{pmatrix}, \begin{pmatrix} qeq \\ HARG & \boxed{22}h \\ LARG & \boxed{18}h \end{pmatrix}, \begin{pmatrix} qeq \\ HARG & \boxed{21}h \end{pmatrix}, \begin{pmatrix} qeq \\ HARG & \boxed{18}h \end{pmatrix}
```

Analysis – Conjunction Reduction



Analysis - Conjunction Reduction




Analysis - Conjunction Reduction

Analysis - Conjunction Reduction

Analysis – Conjunction Reduction

Results

- The analysis for gapping and conjunction reduction is implemented in the Norwegian HPSG grammar Norsyg
 - Transitive and ditransitive verbs
 - Particle verbs
 - Verbs with selected prepositions
 - Non-subject topics
 - Passive
 - Multiple conjuncts
- Ongoing experiments:
 - Reflexive verbs
 - VP idioms
- A test on 333 test sentences show an increase of processing effort of 46% (mainly due to one sentence).

References

- Beavers, J. and Sag, I. A. (2004). Coordinate ellipsis and apparent non-constituent coordination. In S. Müller, editor, Proceedings of the HPSG-2004 Conference, Center for Computational Linguistics, Katholieke Universiteit Leuven, pages 48–69. CSLI Publications, Stanford.
- Chaves, R. P. (2005). A linearization-based approach to gapping. In G. Jger, P. Monachesi, G. Penn, and S. Wintner, editors, FG-MOL 2005: The 10th conference on Formal Grammar and The 9th Meeting on Mathematics of Language, page 14. CSLI.
- Crysmann, B. (2008). An asymmetric theory of peripheral sharing in HPSG: Conjunction reduction and coordination of unlikes. In G. Penn, editor, *Proceedings of FGVienna: The 8th Conference on Formal Grammar, Aug 16-17 2003, Vienna*, pages 45–64, Stanford. CSLI publications.
- Flickinger, D. P. (2000). On building a more efficient grammar by exploiting types. *Natural Language Engineering*, **6**(1), 15–28.
- Haugereid, P. and Morey, M. (2012). A left-branching grammar design for incremental parsing. In S. Müller, editor, Proceedings of the 19th International Conference on Head-Driven Phrase Structure Grammar, Chungnam National University Daejeon, pages 181–194.
- Kathol, A. (1995). Linearization-Based German Syntax. Ph.D. thesis, Ohio State University.
- Pollard, C. J. and Sag, I. A. (1994). Head-Driven Phrase Structure Grammar. University of Chicago Press, Chicago.
- Sag, I. A., Gazdar, G., Wasow, T., and Weisler, S. (1985). Coordination and how to distinguish categories. Natural Language & Linguistic Theory, 3(2), 117–171.
- Siegel, M., Bender, E. M., and Bond, F. (2016). Jacy: An implemented grammar of Japanese. CSLI Studies in Computational Linguistics. CSLI Publications, Stanford University.
- Steedman, M. (2000). The syntactic process, volume 24. MIT Press.

